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Abstract: Data management is a key factor in any software effort. Traditional solutions, such as relational databases,
are rapidly losing weight in the market towards more flexible approaches and data models due to the
fact that data stores as monolithic components are not valid in many current scenarios. The World Wide
Consortium proposes RDF as a suitable framework for modeling, describing and linking resources on the
Web. Unfortunately the current methods to access to RDF data can be considered a kind of handcrafted work.
Therefore the Trioo project aims to provide powerful and flexible methods to access RDF datasets from object-
oriented programming languages, allowing the usage of this data without negative influences in object-oriented
designs and trying to keep the semantics of data as accurate as possible.

1 INTRODUCTION

Software data management has experienced a notable
evolution in the last few years. Relational databases
are still one the most powerful and used solutions for
data storage in many cases, but there are many reasons
to discard it as a suitable technology: On the one
hand, the emergence of new distributed architectures
of software requires new approaches able to fulfil all
these new requirements relying on availability and
flexibility. Unfortunately federated databases do not
yield the expected features and performance in some
scenarios. On the other hand, it is impossible to
normalise a relational schema when data schema is
not clearly decided or condensed. Both issues have
motivated a lot of research in the last few years.
Concerning distributed storage, the software indus-
try currently offers some quite interesting solutions:
Google uses Bigtable or Pregelin many of their appli-
cations, Microsoft developed BitVault, among others.
With respect to how to efficiently store schema-free
data, there are other promising proposals facing this
challenge: from proprietary data models, as solutions
used in many of the distributed storage systems or
in native object-oriented databases, to more open
solutions, such as the XML-based databases.

The World Wide Consortium1 adopted
another approach, often known as the Semantic
Web (Berners-Lee et al., 2001). Semantic Web
aims to provide a set of technologies that would
facilitate the implementation of solutions to this (and
others) current problems, based on the decentralised
Web architecture, the idea of a “Web of Data”.
Obviously it has some additional open issues, such
as the trust and provenance of data, that do not
apply to an intranet environment; but once they
are solved, the “Web of Data” reveals as a much
more powerful solution than a one. W3C’s main
proposal is build upon the current Web. So that
means using HTTP (Fielding et al., 1999) as basic
protocol for transfer information and XML as basic
format for encoding documents, but enriched with
the RDF technologies stack. RDF (Klyne and
Carroll, 2004) (Resource Description Framework)
provides a flexible and extensible data model,
based on the concept of “triple” (subject,
predicate, object), that greatly simplifies data
interoperability, interchange and integration across
different heterogeneous sources and applications.
RDF extends the linking structure of the Web to

1http://www.w3.org/



use URIs to name the relationship between things
instead of documents (Berners-Lee et al., 2005;
Sauermann and Cyganiak, 2008). This architecture is
complemented with languages to model knowledge
(RDFS (Brickley et al., 2004) and OWL (Schneider
et al., 2009)) and languages to natively query
RDF data such as SPARQL (Prud’hommeaux and
Seaborne, 2008)/SPARUL (Schenk and Gearon,
2010).

Consequently RDF allows to relate data
from different providers, interlinking resources
from different datasources, as the “Linked Data”
principles (Berners-Lee, 2006) dictate. The Linked
Data initiative2 is growing quite fast, and a large
amount of data is already available on the Web as
RDF, ready to be consumed by new applications
capable of exploiting this innovative paradigm. This
means a new way to integrate the Word Wide Web
with business data and applications. Due to these
features, RDF may be a key technology to store the
data in the next generation of software applications,
becoming a common layer where data can be stored
and retrieved.

In this position paper we present the Trioo
project (which name means something like “triples
object-oriented”), an ongoing initiative that aims to
add support to some of the most important object-
oriented programming languages for managing RDF
data based on those standard technologies in an
efficient and flexible way. Because at the end “are
objects, not triples”3. A key premise of the project is
that software developers must not be forced to adapt
their oo-design keeping the semantics of data safe
and sound in the software.

This paper is structured as follows: Section 2
analyses the related work relevant to the objectives
addressed by Trioo. Section 3 describes in detail
these objectives and the design issues found, facing
and comparing both computational models, RDF and
object-oriented. Section 4 briefly depicts the on-
going implementations in the current early state of
development. Finally Section 5 discusses the current
conclusions, setting the basic guidelines for the work
in the upcoming months.

2 RELATED WORK

The ongoing work described in this paper is ex-
tensively related to the work made these last years
on object-relational mappings, but also to work in

2http://linkeddata.org/
3http://harth.org/andreas/blog/2009/03/27/

its-objects-not-triples/

accessing (Semantic) Web data. On these fields, and
for better understating of this analysis, it is necessary
to introduce two relevant design patterns:

Active Record is a widely used design pattern to
work with relational databases where each row is rep-
resented as a single object (Fowler, 2002). Therefore,
ActiveRecord can be considered as an approach to
access databases: each table (or view) is wrapped as
a class, and each row as a instance object. The as-
sumption “one object, one row” greatly simplifies the
development of CRUD functions (Create, Read, Up-
date and Delete) on relational databases. In fact, most
of the current ORMs (“Object-Relational Mapping”)
implements this design pattern, or an adaptation of it.

Data Mapper is an adaptation of the Mapper
design pattern (Fowler, 2002). Objects and relational
databases have different mechanisms for structuring
data, and many parts of an object, such as business
logic, collections and inheritance, are not present
in relational databases. The object schema and the
relational schema do not need to match up. The
Data Mapper is a layer of software that separates
the in-memory objects from the database. Its
responsibility is to transfer data between the two
and also to isolate them from each other. With Data
Mapper the in-memory objects do not need to know
even that there is a database present; they do not need
SQL interface code, and certainly no knowledge of
the database schema; in fact the database schema is
always ignorant of the objects that use it.

These two design patterns are probably the most
relevant and used for object-data mapping, but there
are many more, such as “Table Data Gateway” or
“Row Data Gateway”, among others. However this
is not a full report about these patterns, just a brief
introduction of the concepts, in order to illustrate how
data access use to be implemented in modern software
systems. Although the target of the Trioo project are
just RDF-based stores, one of the aims of this position
paper is to extract (positive and negative) conclusions
from other current solutions. Therefore this state of
the art will not be restricted to RDF stores, but it will
cover a wider range of approaches in order to reach
the best possible solution in Trioo.

2.1 Traditional stores

In this paper the term “traditional stores” actually
concerns traditional relational databases. There
are several software solutions that solve the
object-relational impedance mismatch problems



by replacing direct persistence-related database
accesses with high-level object handling functions.
Some of the most relevant are (by alphabetic order):

ActiveRecord4 is the implementation of the pat-
tern with the same name used in the popular Web
framework Ruby on Rail, which main contribution to
the pattern is to relieve the original of two stunting
problems: lack of associations and inheritance. By
adding a simple domain language-like set of macros
to describe the former and integrating the Single
Table Inheritance pattern for the latter, Active Record
narrows the gap of functionality between the data
mapper and active record approach. It follows the
principle DRY philosophy5. There are many other
implementations for many other languages that follow
a quite similar approach, such as Django Models for
Python, nHydrate and Castle for C# (this last one ac-
tually an implementation built on top of NHibernate),
CakePHP for PHP, or GORM for Groovy.

Hibernate originally is an implementation of the
Data Mapper design pattern for the Java language,
but currently is much more, providing a framework
for mapping an object-oriented domain model
to a traditional relational database (Bauer and
King, 2004). The current version is a certified
implementation of the Java Persistence API 1.0
specification (JPA (DeMichiel and Keith, 2006)),
but hopefully soon it will start to support the recent
version 2.0 (JSR317 (DeMichiel, 2009)). Hibernate
also provides a SQL inspired language, called
Hibernate Query Language (HQL), which allows
SQL-like queries to be written against Hibernate’s
data objects. Undoubtedly, Hibernate is the most
extended data mapper for the Java world. A port for
the .NET framework, known as NHibernate6, has
been even carried out. Nowadays JPA has become
so popular that there are several implementations,
although Hibernate is still the most popular one.

iBATIS is an implementation in Java, .NET and
Ruby of the Active Record design pattern, providing a
persistence framework which automates the mapping
between relational databases and objects. It takes the
reverse approach than, for instance, Hibernate: iBatis
automates the creation of POJOs (Plain Old Java
Objects) from an already existed relational database.

4http://ar.rubyonrails.org/
5Don’t Repeat Yourself
6https://www.hibernate.org/343.html

All these solutions allow to develop persistent
classes over relational databases following object-
oriented idiom, including association, inheritance,
polymorphism, composition, and collections manage-
ment.

2.2 RDF-based stores

The critical problem of how to efficiently query RDF
datasets has been there since the origins of the Se-
mantic Web until today (Sintek and Decker, 2002).
It is true that the current technological landscape
has substantially improved: there is a standard query
language (SPARQL), efficient RDF stores (Virtuoso7,
Sesame8, 4Store9, and many others), and libraries
that support all this technology. However there is
still a huge gap on how all this RDF-based data
is actually managed on the software systems. As
described above, a RDF class is not exactly the same
that a class in object-orientation, even though there
are some solutions based on this approach10. Anyway
there are some interesting attempts to be analysed:

ActiveRDF proposed a novel way to work
with RDF with object-orientation on Ruby (Oren
et al., 2008), based on the ActiveRecord design
pattern (Fowler, 2002), and clearly influenced by the
work on model-driven Web development. When it
was developed, SPARQL did not have data update
capabilities, so it works over proprietary interfaces
(based on a pluggable architecture that allows new
implementations) for each store for persisting the
RDF data the query language has evolved since then,
but apparently there is not any plan to support its new
features.

Empire11 is an implementation of a large chunk
of the core of JPA to provide an interface to RDF
databases (currently only 4Store, Sesame, and Jena)
using SPARQL, SeRQL (Broekstra and Kampman,
2003) and the supported stores’ proprietary API, by
a small annotation framework for tying Java beans to
RDF.

7http://virtuoso.openlinksw.com/
8http://www.openrdf.org/
9http://4store.org/

10Such as the one use by Soprano (http:
//soprano.sourceforge.net/apidox/trunk/
soprano_devel_tools.html#onto2vocabularyclass)
or by Protégé (http://protegewiki.stanford.edu/
index.php/JSave)

11http://github.com/clarkparsia/Empire



JenaBean12 persists POJOs to Jena’s models13, and
back. Although it is annotation-based, requires to
extend a templated class (RdfBean) to gain RDF
capabilities, which is a heavy design restriction on
programming languages with single inheritance like
Java.

OntoBroker originally consists of a number of lan-
guages and tools that enhance query access and infer-
ence service of the World Wide Web (Fensel et al.,
1998). This is based on the use of ontologies to
annotate Web documents and to provide query access
and inference service that deal with the semantics of
the presented information. Nowadays OntoBroker14

has become a consolidated commercial product that
provides a high performance and scalable Seman-
tic Web reasoning middleware, supporting several
standard technologies such as OWL, RDF, RDFS,
SPARQL or F-logic.

Ripple is a relational, stack-based data-flow lan-
guage for the Semantic Web (Shinavier, 2007), a
versatile framework for traversal-based algorithms on
semantic networks. The open source implementa-
tion15 is written in Java and includes a command-
line interpreter as well as a query API which only
interoperates with the native API of Sesame RDF
store.

SuRF16 is another implementation of the Active
Record pattern. It exposes the RDF triple sets as
sets of resources and seamlessly integrates them into
the object-oriented paradigm in Python, in a similar
manner as ActiveRDF does for Ruby. In can work
both over files or RDF stores, using SPARQL for
reading where possible, but implementing proprietary
interfaces for writing data to a couple of natively
supported stores.

This analysis draws that many these products use
the same approaches for RDF than their equivalents
for other technologies. For instance, even though
the Active Record pattern fits well for relational
databases, that is not so for RDF: a RDF object
is not a row, it is a set of triples. Thus RDF data
model has many differences that should be taken

12http://jenabean.googlecode.com/
13http://jena.sourceforge.net/javadoc/com/

hp/hpl/jena/rdf/model/Model.html
14http://www.ontoprise.de/en/home/products/

ontobroker/
15http://ripple.googlecode.com/
16http://surfrdf.googlecode.com/

into account for developing such a kind of tools.
Therefore it would be necessary learn from other
more developed technologies, but it must flee from
negative influences. Many of these details will be
described below in this paper.

2.3 Other families of stores

Data storage embraces many more technologies
than those described above, such as object-oriented
databases. Unfortunately object-oriented databases
are still minor players with reduced market niches.
And meanwhile some of the products described above
have added object capabilities to relational databases.
In a parallel way there are other alternatives that
do not require fixed table schemes, and usually
avoid join operations. It is worth highlighting the
NoSQL initiative17, that actually it is not a concrete
product, but a portmanteau term for a loosely defined
class of non-relational data stores that break with
a long history of relational databases and ACID
guarantees18. In addition, there are two products that
are somehow interesting due their adaptability to
many different stores:

EclipseLink19 provides an extensible framework
that allows Java developers to interact with various
data services, including relational databases, web
services, Object XML mapping (OXM), and
Enterprise Information System (EIS). EclipseLink
supports a number of persistence standards including
Java Persistence API (JPA), Java API for XML
Binding (JAXB), Java Connector Architecture (JCA)
and Service Data Objects (SDO).

LINQ is a general-purpose query language
proposed by Microsoft for adding native query
capabilities to their .NET framework (Meijer et al.,
2006). LINQ applies to all sources of information,
not just relational or XML data, by implementing new
data providers, even for RDF, such as the fledgling
effort on LinqToRdf20.

17http://nosql-database.org/
18Atomicity, Consistency, Isolation, and Durability
19http://www.eclipse.org/eclipselink
20http://linqtordf.googlecode.com/



3 BRINGING TRIOO TO THE
ARENA

The Trioo project aims to develop a technology en-
abling to easily use RDF data directly in some object-
oriented programming languages, not only to persist
that data in RDF stores, but also to consume data
available on the Web and to expose the business
model of the application as Linked Data. It is true
that some languages start to offer new generic mecha-
nisms closer to the object-orientation that to the query
technology, such as the above described Microsoft’s
LINQ; but they still fail to offer more natural ways to
access the data, from an object-oriented perspective.
This is not a new challenge in computer science,
because the software industry already offers some
solutions since some years ago, for instance Hibernate
for relational databases. But going deeply into the
problem, it is clear that there is not any satisfactory
solution to work with RDF, because they all strongly
rely on design patterns, such as Active Record, too
close to the entity-relational model. And the RDF
model has many special features and semantics that
should be treated as such. Therefore providing a tech-
nology capable of managing RDF data in a object-
oriented way is a appealing scientific challenge that,
from our point of view, may potentially have a great
impact on the usage of the Semantic Web to provide
innovative software solutions to real world problems.

Figure 1: Trioo overview.

Ideally with Trioo developers will be not need to
deepen in detail on the RDF data model, abstract-
ing on how the query language internally works.
However Trioo would not only take care about data
mapping, but also about the typing inference where
possible. And probably a cache mechanism would be
also required, in any case such a kind of implemen-
tation details are not so relevant for the scope of this
paper.

3.1 Computational models

Both computational models (RDF and OO) share
many concepts. But at the same time they present
many substantial differences on their semantics.

In the object-orientation there is no a unique
computational (Logozzo, 2004), there are more
than one with several implementations. Usually
object-oriented languages are divided into two big
families (Evins, 1994): class-based and prototype-
based programming languages.

Class-based programming languages use a com-
putational model where objects are grouped on sets
with equal structure and behaviour as instances of the
same class (Booch, 1993). Thus there is a heavy link
between an object and its class on instantiation, and
it is not possible to create and use an object without
previously define its static structure and behaviour on
a class.

Prototype-based programming languages aim
to be more faithful to the object computational
model, where it is only necessary to have objects,
no additional abstractions such as classes are
required (Blaschek, 1994; Noble et al., 1999;
Borning, 1986). The common behaviour is defined
by what is known as “trait objects” (Ungar et al.,
1991). The shared structure is represented as
prototype objects, which inherit their behaviour
from the trait objects. Therefore the state is always
defined always as objects. The creation of objects
(actually instance objects) is done using cloning
those prototype objects.

So both approaches of object-orientation must be
taken into account in Trioo.

RDF semantics is further complicated. It is
an assertional language intended to be used
to express propositions using precise formal
vocabularies (Hayes and McBride, 2004). The
semantics of the language is specified using model-
theory, a technique which assumes that the language
refers to a “world”, and describes the minimal
conditions that a “world” must satisfy in order to
be an interpretation which makes a expression in
the language true. The utility of a formal semantic
theory is to provide a mechanism to determine valid
inference processes, i.e. when the truth is preserved.
Through the notions of satisfaction, entailment and
validity, RDF semantics gives a rigorous definition
of the meaning of a RDF graph. Actually, the
RDF semantics specification defines four normative



notions of entailment for RDF graphs: Simple,
RDF, RDFS, and Datatype entailment. Simple-
entailment captures the semantics of RDF graphs
when no attention is paid to the particular meaning
of any of the names in the graph (this is precisely
the semantics supported by the current version of
SPARQL). To obtain a complete meaning of an
RDF graph written using a particular vocabulary,
it is necessary to add further semantic conditions
to interpret particular resources and typed literals
in the graph. This way, RDF-entailment provides
support for basic entity interpretation using the
RDF vocabulary (typing, literals, basic structures,
etc.). Furthermore, D-entailment imposes additional
conditions on the treatment of datatypes (for
instance, for the use of externally defined datatypes
identified by a particular URI reference). And finally
RDFS Vocabulary extends RDF to include a larger
vocabulary with more complex semantic constraints,
such as classes, subclasses, domains, ranges and so
on (Brickley et al., 2004). RDF graphs (serialised
using RDF/XML syntax) are also the normative
representation of OWL ontologies for exchange
purposes. However, Trioo is not intended to support
OWL semantics for now. A full compatibility with
OWL would introduce a lot of complexity, as it will
require interpreting OWL vocabulary and axioms,
and providing support for DL reasoning.

Hence there are many details on these computa-
tional models (object-oriented and RDF) that would
need to be analysed in detail in order to archive a real
integration:

3.1.1 Typing

Typing is an intriguing challenge, since both
approaches implementing the object-oriented
computational model do it differently. For class-
based languages the typing is build upon a hierarchy
model of types based on classes (inheritance is
defined at that class level, building a hierarchy
system of classes). Nevertheless prototype-based
languages provide a faithfully implementation of the
object-oriented model: the inheritance relationship
between objects is actually a derivation relationship,
consequently “instance of ” relationship is no
necessary any longer; ideally this derivation could
be from more than one object, although commonly
this feature is restricted to a single reference in
many of the implementations of the prototype-based
computational model, such as Python. Typing on
RDF works like the pure prototype-based model:
each RDF object could have several types, with no
restrictions. Figure 2 illustrates these differences

on typing. Other concepts, such as inheritance and
consistency, only appears with RDFS and OWL.
Following section describes how type inference
works.

Figure 2: Differences on typing.

3.1.2 Type inference

Type inference is a feature to automatically deduce
the type of a value in a programming language, both
at compilation-time and run-time depending on the
concrete language. It is a common feature in dynami-
cally typed programming languages, but also in some
strongly statically ones, such as C#. On programming
that inference affects to the type of variables (or at-
tributes in the case of object-oriented programming).
By contrast, in RDF relationships are declared using
properties. And those properties are global, i.e. the
same can be used to link different objects. In RDFS
(and OWL) each property can declare both a domain
and a range: the type that respectively the subject and
the value may have. Therefore given a property P
with a domain restriction D and a range restriction R,
with a triple (a,P,b) it would be inferred that a is of
type D and b of type R. Needless to say that support
this behaviour would be difficult on statically typed
programming language, but it would be achievable in
dynamic languages.

3.2 Expressiveness

As commented above, OWL would be not supported
by Trioo. However, Horst proved that entailment
for RDFS is decidable, NP-complete, and in P if the
target graph does not contain blank nodes. Therefore
probably it would more realistic just to use the RDFS
semantics (ter Horst, 2005). Moreover, this level
of expressiveness could be achieved without perform
a full reasoning process, because it could be vastly
implemented directly inside the object model (in fact,
there is already an implementation in Python of this



concept21).

3.3 Integrity Constraints

Integrity constraints are used to ensure accuracy and
consistency of data. Those constraints are directly
ensured by the engines for other families of stores (for
instance, by the entity-relationship model). However,
detecting constraint violations is out of the scope of
RDF Schema and OWL due to the Open World As-
sumption adoption. Under OWA, a statement cannot
be inferred to be false on the basis of a failure to
prove, i.e. if something is not said, it is not possible
to know whether it is true or false. As a consequence,
everything may be true unless proven otherwise. The
OWA assumes incomplete information by default and
it is really useful for knowledge reusability in con-
texts such as Linked Data, limiting the the kinds of
deductions just to those that follow from statements
that are known to be true. However, with respect to
Integrity Constraints, OWL and RDF Schema consis-
tency checking only detects logical inconsistencies in
the data, but missing information does not cause an
inconsistency. Consider the following RDF graph:

foaf:name rdfs:domain foaf:Person .
:sergio foaf:name "Sergio" .

Under OWA, the domain restriction implies that
:Sergio is a foaf:Person, but there is no violation
of the domain of the property. Missing values of data
do not cause inconsistencies, rather new information
of data is inferred from the application of the RDF
Schema entailment rules. These inferences may be
counterintuitive for users who need data validation,
like in some real scenarios and applications. As
other frameworks for managing object-oriented do-
main models with data repositories, Trioo is envi-
sioned to provide support for integrity and validation
over RDF data. In order to check these inconsisten-
cies, Trioo must explore how to introduce the Closed
World Assumption alternatively to OWA. CWA in-
terpretation means that an assertion is considered
false if it is not explicitly known whether it is true
or false. This semantics is usually supported by
classical logical programming systems implementing
Negation as Failure (NAF). There are several ways
to come up with Integrity Constraints from the OWL
and RDF Schema axioms of an ontology (Sirin and
Tao, 2009; Motik and Rosati, 2007). One of the
most interesting approaches is the translation of OWL
axioms to SPARQL queries (following the entail-
ment regime defined by Sirin et al. (Sirin and Parsia,

21http://www.ivan-herman.net/Misc/
PythonStuff/RDFSClosure/

2007)). SPARQL is equivalent to non-recursive data-
log and NAF may be encoded using the well-known
OPTIONAL/FILTER/!BOUND pattern. The Pellet
Integrity Constraint Validator22 implements this ap-
proach, automatically translating OWL axioms into
ASK SPARQL queries, so an OWL ontology can be
used to validate RDF data integrity. The previous
domain restriction of the foaf:name property may be
written as the following integrity constraint:

ASK WHERE {
?person foaf:name ?name .
OPTIONAL { ?person2 rdf:type foaf:Person }
FILTER ( bound(?person2) )
FILTER ( ?person = ?person2 )

}

3.4 Target languages

The success of the project strongly depends largely on
the achieved impact. And the impact is directly linked
to the programming language chosen, both for its
popularity and its technical features. With respect to
the popularity of programming languages the TIOBE
Programming Community index gives an indication
of it23. On the top of this ranking is the Java pro-
gramming language (Gosling et al., 2005) since 2001.
Java is general-purpose, concurrent, and class-based
object-oriented programming language. It has a sim-
pler object model and fewer low-level facilities, such
as direct access to memory. Java has single inheri-
tance, but conceptually that is not entirely true since
the inclusion of Interfaces (reference types without
implementation). Java applications are compiled to
an intermediate language (known as“bytecode”) that
runs on a virtual machine. The java.lang.reflect
package provides introspection capabilities that al-
lows to examine Java applications at run-time; for
providing some computational reflection capabilities
the package simulates them with an implementation
of the Proxy pattern (Gamma et al., 1994), known
as “Dynamic Proxy Classes”. Additionally to all
these features of the language, Java would a good
candidate for implementing Trioo because all the
good Semantic Web tools implemented in Java: Jena,
OWL API, Pellet, etc.

However dynamic programming languages are
closer to RDF, because actually they implement a
prototype-based model. Probably the most pure and
complete of these languages could be Self (Ungar
and Smith, 1987). Self is a prototype-based dynamic
object-oriented programming language, environment,

22http://clarkparsia.com/pellet/icv
23Available online at http://www.tiobe.com/index.

php/tiobe_index, retrieved by February of 2010.



and virtual machine centred around the principles of
simplicity, uniformity, concreteness, and liveness.
Unfortunately it is less usable than other modern
languages. Due to this fact, and also taking into
account popularity criteria, Python would be one
of the most interesting choices for provide the
second reference implementation of Trioo. Python
is a prototype-based general-purpose and dynamic
typed programming language (van Rossum, 1989),
designed with the philosophy of emphasise the
code readability. It offers a modern and versatile
computational model, supporting several paradigms
such as object-oriented and structured programming.
Python also includes some important features, such
as introspection, structural reflexion (the union of
the latter two is called metaprogramming), multiple
inheritance and generative programming, converting
its computational model in one of the most usable and
versatile between modern programming languages.

But, apart from the commitment of initially ap-
ply Trioo on these two widely used object-oriented
programming languages, Trioo aims to offer much
more, covering other scenarios that would be very in-
teresting to complete this research work. For instance,
the powerful dynamic features available on JavaScript
offer an interesting scenario where more conclusions
could be extracted. For instance, given the trend
to use AJAX (Asynchronous JavaScript and XML)
for improving the user experience on Web interfaces,
together with the W3C’s effort to enrich the markup
with technologies such as RDFa (Adida et al., 2008),
it could convert Trioo in a suitable technology to
provide support for developing semantically-enriched
user interfaces on (X)HTML due the interesting dy-
namic features of the JavaScript language. Addi-
tionally, the support for dynamic typing included in
C# 4.0 (Hejlsberg, 2008) open an interesting area
of applicability in the Microsoft’s .NET framework.
These, and others, lines open amazing opportunities
on unexplored research fields in many of the potential
target languages where Trioo could be applied and/or
extended.

3.5 Mechanism

How Trioo would be applied on all target languages is
a quite important question that may not be answered
yet for all of them. Although probably such mecha-
nism would need to be supplemented with a external
configuration file (XML, YAML or whatever suitable
format). A priori there are some requirements that
should be taken into account: simplicity (it should
follow the DRY philosophy, reducing as possible the
repetition of information), non intrusive (the mech-

anism used should not modify the original design,
e.g. inheritance would not be a suitable construction
when the language only supports single inheritance),
legible (it should not dirty the readability of source
code), accessible at run-time (due to the intrinsically
dynamic features of the project, the mechanism cho-
sen should offer that meta-information at run-time),
customisable (such mechanism should support to be
parametrise, in order to allow implementations to
be customisable when would be needed). All these
requirements could be covered with annotations, that
are supported by the two first chosen target languages.
Annotations were introduced in the version 5.0 of the
Java programming language (Bracha, 2004). They are
a special form of syntactic metadata that can be added
to Java source code and can be reflectively retrieved at
run-time. On the contrary, annotations in Python are
syntactic sugar that actually provides a generic im-
plementation of the decorator pattern (Gamma et al.,
1994), enhancing the action of the function or method
they decorate. In Python prior to version 3, decorators
only apply to functions and methods; however class
decorators are supported from Python 3.0 (Winter,
2010).

3.6 Persistence

It is obvious that, in this concrete moment when W3C
is running a working group24 to extend SPARQL
technology, including some of the features that the
community has identified as both desirable and im-
portant for interoperability based on experience with
the initial version of the standard (Kjernsmo and
Passant, 2009), formally known as SPARQL 1.1. For
instance, the new properties path (Seaborne, 2010)
converts SPARQL in a more powerful query lan-
guage. Henceforth all these new features should be
exploited by new tools.

A SPARQL query contains a set of triple patterns,
where triple patterns are like RDF triples except that
each term may be a variable. A basic graph pattern
matches a subgraph of the RDF data when RDF
terms from that subgraph may be substituted for
the variables and the result is RDF graph equivalent
to the subgraph. The expressiveness of SPARQL
is powerful: it is a query language equivalent in
expressive power to Relational Algebra (Angles and
Gutierrez, 2008). Therefore, in a similar way that was
previously done for relational databases (Cyganiak,
2005), it would be necessary to additionally describe
a transformation from object-oriented programming
languages into the algebra of SPARQL.

24http://www.w3.org/2009/05/
sparql-phase-II-charter



Consequently the innovative approach of the
Trioo project would be to provide a purely standards-
based implementation for store RDF data. So that
means only using SPARQL 1.1, not implement
proprietary interfaces, allowing developers to be
independent from a concrete RDF store. Obviously,
this purist approach would be supplemented with
the additional possibility of using specific dialects of
SPARQL25, in a similar way as Hibernate does, in
order to maximise the performance where would be
possible, but at the same time without favouring the
vendor lock-in allowing developers to switch to other
RDF store just changing a configuration line.

4 IMPLEMENTATIONS

Currently26 the Trioo project is immersed in de-
veloping the two reference implementations in the
two programming languages selected above (see Sec-
tion 3.4). The analysis carried out in this paper
establishes a solid foundation that greatly facilitated
the design and implementation on both programming
languages. An alpha prototype has been developed in
Java with a functional version of some of the core fea-
tures. The philosophy followed for the development
of the Python version is far more ambitious, since it
aims to provide RDF support in a more natural way,
trying to exploit the full power of the prototype-based
computational model. Therefore it is still too early to
assess the results. In a nutshell, unfortunately both
are far from being full functional implementations
according the criteria described in this paper, and they
still would require more effort on development. Of
course, needless to say that when they would be ready
for a real usage, all these implementations will be
released as open source.

5 CONCLUSIONS AND FUTURE
WORK

This paper has described the ongoing work carried
out by the Trioo project to leverage the power of the
RDF data model into object-oriented programming
languages, trying to keep the semantics of data safe
and sound into the applications. But the final aim
is not only to persist data on RDF stores, but also to
allow consuming and publishing RDF data linked on
the Web.

25SPARQL proprietary extensions are widely imple-
mented by many vendors.

26At March 5th, 2010

The analysis accomplished on Section 3 shows
that it is possible to integrate RDF data model into
object-oriented computational models with a good
enough level of commitment between both semantics.
The prototype-based model fits best with RDF than
the class-based, but that should not be an impediment
to also implement Trioo on class-based program-
ming languages. And since the approach followed to
perform this analysis has been completely language
independent, Trioo could be potentially applied to any
object-oriented programming language.

Trioo gives rise to the necessity to have software
tools for accessing RDF data from software appli-
cations. The learning curve of some of the current
RDF tools is not always accessible to all developers,
while they require advanced knowledge of both the
data model and query language. And, as with other
technologies, developers should not need to be aware
of all the details about how their applications store
the data. Therefore Trioo should abstract developers
of such details. For the moment the results of the two
current implementations are still promising. As these
implementations progress to a more mature level of
development, many of the current open questions
will have a more clear answer. The lessons learned
from these implementations will serve as feedback for
the current groups working on the related standards
involved in Trioo, in such a way that all these standard
technologies can really serve to fulfil the objectives
set forth in the project initially.
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